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Abstract We observe an abrupt change in diamagnetic susceptibility at critical donor
concentration for an AlxGa1−xAs/GaAs quantum dot system in the effective mass
approximation indicating a possible semiconductor metal transition. The effect of
confining potential and the laser intensity on the abrupt change in diamagnetic sus-
ceptibility has also been studied. The effect of nonparabolicity of the conduction band
has been included in our calculations. Results are presented and discussed.

Keywords Square well potential · Parabolic potential · Hydrogenic donor ·
Diamagnetic susceptibility · Spherical quantum dot · Semiconductor metal transition

1 Introduction

Metal-Insulator transition (MIT) is one of the current topics of research in condensed
matter physics. Abrahams et al. [1] developed the scaling theory of localization and
applying to non interacting electron predicted that no MIT could occur in low dimen-
sional systems. But MIT has been observed in low dimensional systems experimentally
and hence needs refocusing in the understanding of MIT. Anderson [2] has shown that
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a three dimensional electron gas could undergo MIT in the presence of strong disorder.
Thouless [3] argued that MIT could be regarded as a quantum phase transition. Since
electron–electron interaction was not considered in the scaling theory of localization,
there are reasons to believe that such MIT may be driven by interactions and there
is no consensus yet for the correct theory for the occurrence of MIT in low dimen-
sional systems. According to Mott and Hubbard [4], Semiconductor–Metal transition
is usually achieved due to the increase of overlap of impurity wave functions and cor-
relation among electrons at critical concentration. In these scenario, Arora and Spector
[5] predicted Semimetal–Semiconductor transition to occur at critical thickness of the
quantum well wire (QWW) due to the carrier freeze out because of the increase in
effective bandgap from the size quantization. Merwyn et al. [6] had shown the possi-
bility of SMT to occur in a QWW in the effective mass approximation, using Anderson
localization and Hartree Fock dielectric function with exchange and correlation of elec-
trons. They have computed the critical concentration for the SMT by the abrupt change
in diamagnetic susceptibility. Extending the work of the Merwyn et al. [6] to quantum
dot (QD) and using the Anderson localization and Hartree Fock dielectric function
with exchange and correlation of electrons in the effective mass approximations the
possibility of SMT in a QD is demonstrated. The Schrodinger equation is solved vari-
ationally. As there is no evidence to the nature of confining potential in a spherical
quantum dot (SQD) we have discussed the SMT for SQD with square well confinement
and SQD with Parabolic confinement. Merwyn et al. [7] had shown that SMT could
be controlled by applying a laser field in a quantum well. Extending this approach,the
influence of the laser field on the SMT in SQD has been discussed. We present the
theory in the next section and result and discussions in the subsequent section.

2 Theory

The Hamiltonian of the hydrogenic donor in a GaAs/AlxGa1−xAs SQD with square
well confinement (in the finite barrier model) in the effective mass approximation is
given by

H =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−h̄2∇2

2m1
− e2

ε1
(
r2 + a2

)1/2 r ≤ R

−h̄2∇2

2m2
− e2

ε2
(
r2 + a2

)1/2 + V (r, a) r ≥ R
(1)

where R is the radius of the SQD and m1, ε1 and m2, ε2 are the effective masses of
electron and dielectric constant for the GaAs well and AlxGa1−xAs barrier material
respectively and a is the amplitude of electron oscillation in laser field.

The Hamiltonian for a hydrogenic donor in a SQD with parabolic confinement is
given by
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H =
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where ω is the parabolic oscillator frequency given by (2) V (r,a)
m1 R2

As disorder was attributed as the key ingredient in explaining experimental results
on SMT [8,9], we have considered Anderson localization which arises due to the
randomness in the potential seen by the electron because of the random distribution
of impurities [10] which is given by

1
ε (r) ra

= − e−λ r
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+

[
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]

e− ρ r (3)

where ra = √
r2 + a2, ρ = τ + κ where κ2 = 4πe2n (ξ), wherein n (ξ) is the density

of states at the Fermi energy.
The exchange and correlation of electrons is considered through the Hartree Fock

(HF) dielectric function in the second term of the Hamiltonian and is given by [11]
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η = k/2kf ;η(ξ) = m∗kf/π
2h̄2 is the density of states at the Fermi energy and

2Ek = E(k)exc + E(k)cor

E (k)exc = −π2e2
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where e = h̄ = 1 in atomic unit.
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The trial wavefunction of the ground state in a confined square well potential is
chosen as [12]

ψ =
{

N1
Sin(αr)
αr e−λr r ≤ R

N2
eiβr

βr e−λr r > R
(5)

where α = √
2m1E, β = √

2m2(V(r,a) − E) in atomic units, N1 and N2 are the
Normalisation constants, E is the subband energy and λ is the variational parameter.
The ground state trial wave function for the donor confined in a parabolic potential is
given by [13]

ψ =
⎧
⎨

⎩

N3e− γ2r2
2 F

[ 1
2

( 3
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) − δ
4 ,

3
2 ; γ 2r2
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N4
eiξr
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(6)

where γ = √
2m1V (r, a)/R, δ = E

√
2m1R2/V(r, a), ξ = √

2m2 (V (r, a)− E),N3
and N4 are the Normalisation constants and F[u,v; ρ] is the confluent hypergeometric
function and ς is the variational parameter.

In the presence of laser field the electron—impurity ion interaction is screened and
is given by [14] −e2

ε(r)(r2+a2)1/2
with amplitude of electron oscillation in the radiation

field a=eA/mc ω which is proportional to I 1/2ω−1/2, I being the intensity of laser
radiation, ω is the frequency of laser radiation and V(r,a) is the laser dressed confining
potential which is given by V (r, a) = 1

2 VB�
(
r2 − R2

EW

)
where �(z) is the step

function, REW = R/2—a is the effective Radius for a laser dressed QD.
VB is the barrier potential of the carrier and is given by

VB(R) =
{

0 r ≤ REW

0.6Eg r > REW
(7)

where Eg = 1.155 x + 0.37 x2 and x is the Al composition.
The effect of non parabolicity of the conduction band has been considered through

the effective mass m∗ Chaudhuri and Bajaj model [11] as

m∗

m0
= m

[

1 + γ
(
En,l

)

m/m0

]

(8)

where γ(E) = 0.0436 E + 0.236 E2 − 0.147 E3 with E taken in eV.
The 〈H〉 is minimized with respect to λ for the square well and ς for parabolic

potential confinement to fix the wave function ψ for both the cases.
The diamagnetic susceptibility of a donor in a ground state is calculated from [11]

χdia = − e2

6m1 ε1 c2 〈r2 + a2〉 (9)
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where e = 1, c = 137 in atomic units and 〈r2〉 is the mean square distance of the
electron from the nucleus. The results and discussions are presented in the next section.

3 The results and discussions

In Fig. (1) we present the variation of χdia against donor concentration (nd) for
laser amplitude a = 150 Å and without laser field (a = 0Å) for x=0.4. The fig-
ure shows a drastic drop in χdia indicating metallization at a donor concentration of
∼3 × 1021 cm−3 for the SQD with parabolic confinement and at ∼1 × 1021 cm−3 for
SQD with square well confinement when no laser field is applied. Thus the SMT
occurs at a higher nd for SQD with parabolic confinement than for SQD with square
well confinement. When the laser field is applied the SMT occurs at a lower nd and
for a laser field of amplitude a = 150 Å the SMT occurs at a nd of ∼2 × 1020 cm−3

for the SQD with parabolic confinement and at a nd of ∼1 × 1020 cm−3 for SQD with
square well confinement. When an increasing laser field of amplitude ‘a’ is applied,
the effective Radius REW, and hence the radius of the QD, is decreased which in turn
decreases the donor binding leading to an abrupt change in χdia at a lower donor
concentration ‘nd’ [7]. The difference in the value of nd for SMT between the SQD
with parabolic confinement and SQD with square well confinement is reduced when
a laser field is applied.

Similar result are observed for x = 0.1 as shown in Fig 2. The SMT occurs at a
lower donor concentration for x = 0.1 compared to x = 0.4 and is appreciable when
there is no laser field compared to the case when a laser field of amplitude of a = 150 Å
is applied. The nonparabolicity of conduction band has no significant effect on SMT
for both x = 0.4 and x = 0.1. Since we were unable to minimize the Hamiltonian for

Fig. 1 Variation of χdia against donor concentration (nd) for laser amplitude a = 150 Å and without laser
field (a = 0Å) for x = 0.4
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Fig. 2 Variation of χdia against donor concentration (nd) for laser amplitude a = 150 Å and without laser
field (a = 0Å) for x = 0.1

well widths less than 80 Å (a situation of almost strictly 0D system), which indicates
that for a strictly zero dimensional system SMT may not be possible as per the scaling
theory.

To conclude, there is a possibility of occurrence of SMT in quasi zero dimensional
electron system like QD at critical concentration and if so it can be triggered and
controlled by the amplitude of laser field. As mentioned earlier, as there is no concrete
theory or experiment to understand SMT in 2D systems or lower than that, perhaps,
some newer theory to explain its mechanism like traps etc as suggested by Alfshuler
et al. [15] and general lowering of effective barrier height due to the formation of
impurity bands in highly doped systems and diminishing of effective barrier thickness
in both regimes of above and below SMT by individual impurities as proposed by
Rakoczy et al. [16] have to be considered which may throw more light on this.

4 Conclusions

This study can be used as novel direction towards tuning of Fermi level and gap
energy which may provide an important step towards the band gap engineering in
Nanostructure and tunable devices.

References

1. E.A. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673–676
(1979)

2. P.W. Anderson, Phys. Rev. 109, 1492–1505 (1958)
3. D.J. Thouless, Phys. Rev. Lett. 39, 1167–1169 (1977)

123



J Math Chem (2013) 51:1815–1821 1821

4. B.K. Ridley, Quantum Processes in Semiconductors, 3rd edn. (Clarendon Press, Oxford Science pub-
lications, New York, 1993), Chapter 2, pp. 75-81

5. V.K. Arora, H.N. Spector, Supperlatt. Microstuct. 1, 251–253 (1985)
6. A. Merwyn Jasper D Reuben, D. Varshney, K. Jayakumar, J. Comput. Theor. Nanosci. 8, 1208–1211

(2011)
7. A. Merwyn Jasper D Reuben, P. Nithiananthi, K. Jayakumar, Superlatt. Microstruct. 46, 710–714

(2009)
8. R.N. Bhatt, Physica 146B, 99–111 (1987)
9. C.A.S. Lima, L.C.M. Miranda, Phys. Rev. A. 23, 3335–3337 (1981)

10. A. John Peter, K. Navaneethakrishnan, Solid State Commun. 122, 655–659 (2002)
11. P. Nithiananthi, K. Jayakumar, Physica B 391, 113–117 (2007)
12. N. Porras-Montenegro, S.T. Perez-Merchancano, Phys. Rev. B. 46, 9780–9783 (1992)
13. E.C. Niculescu, M. Cristea, Proc. Int. Semicond. Conf. 1, 335 (1999)
14. Y.P. Varshini, Superlatt. Microstruct. 30, 45–52 (2001)
15. B.L. Altshuler, D.L. Maslov, V.M. Pudalov, Phys. Stat. Sol. B. 218, 193–200 (2000)
16. D. Rakoczy, G. Strasser, J. Smoliner, Phys. Rev. B. 68, 073304–073308 (2003)

123


	The possibility of semiconductor--metal transition in a spherical quantum dot
	Abstract
	1 Introduction
	2 Theory
	3 The results and discussions
	4 Conclusions
	References


